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1. INTRODUCTION

The harmonics-to-noise ratio (HNR) has been used to quantify the cycle-to-
cycle waveform irregularity of voice signals [l]. It assumes that the signal consists
of two components: a harmonic component which is the periodic pattern that
repeats from cycle-to-cycle, and an additive noise component which produces the
cycle-to-cycle differences. In the cited work [1], the former was computed as the
average of the individual cycles (wavelets), and the latter as the difference of the
wavelets to their average. Since the wavelets have different lengths, they were
normalized in time by zero padding each wavelet to the longest period, so that
they could be compared on a point-by-point basis.
The zero-padding normalization has a disadvantage [2]: since the wavelets

differ in length, a large portion of the computed HNR will be caused by the
length variance. A ®rst solution to this problem would be linear expansion or
compression of all wavelets to a common length. However, phase differences
between landmarks of the wavelets (maxima, minima, in¯ection points, etc.)
would still remain, which would contaminate the computed HNR. Therefore, an
accurate computation of the HNR requires a non-linear expansion or
compression of the wavelets (non-linear time normalization) to align their
landmarks in time. To accomplish an optimal wavelet alignment, dynamic
programming algorithms have been used [2±4]. As an alternative approach, zero
phase transformations have been used to remove all phase-related information
from the wavelets prior to computation of the HNR [3]. However, this approach
had in general poorer results than the dynamic programming algorithms.
A similar issue has been recently discussed in the case of speech movement

signals [5], where various approaches for extracting the average from a set of
speech wavelets were compared. Special attention was given to non-linearly
normalized averaging, in which the wavelets are non-linearly expanded to a
common length and optimally aligned before extracting the average, and a new
algorithm for optimal alignment based on Functional Data Analysis (FDA) [6±
8] was introduced. It was argued that this algorithm might have advantages over
previous dynamic programming because the resultant normalizing functions are
smooth and differentiable, it does not require users to select one of the wavelets
as reference (template), and different optimization criteria may be adopted
according to the application.
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This letter will show the application of the FDA algorithm to compute the
HNR, of a voice signal. Its general purpose is to show the potential of FDA to
signal analysis, and stimulate further developments and applications. The
algorithm will be ®rst described in detail and its application will be next
illustrated with an example.

2. FDA ALGORITHM

2.1. NON-LINEAR TIME NORMALIZATION

Let us call the set of wavelets to normalize (i.e., the individual cycles of a voice
signal) xi(t), where i=1, . . . , N, and N is the number of wavelets. For
simplicity, they are considered as continuous functions of time. Further, they are
assumed to have the same length, from t=0 to t=1.
For each wavelet xi(t), one wants to determine a strictly increasing and

reasonably smooth transformation of time hi(t), (warping function), such that
each normalized wavelet

x�i �t� � xi�hi�t�� �1�
is close in some measure to its average

�x��t� � 1

N

XN
i�1

x�i �t� �2�

Such a transformation may be conveniently de®ned as

hi�t� � A0 � A1

�t
0

e

� u
0
wi�v� dv du, �3�

where wi(t) is the relative curvature of hi(t) (to be determined optimally) and
coef®cients A0 and A1 are selected so that hi(0)=0 and hi(1)=1 [6±8]. Given
any function wi(t) such that the integrals in equation (3) exist, this equation will
produce a strictly increasing and twice differentiable function hi(t).
Different measures may be used to evaluate the closeness of the normalized

records to their average, according to the particular application [7]. Here, the
measure
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is adopted, where a1, a2, and l are positive, constants. The ®rst integral is the
classical squared error measure used in the dynamic programming algorithms
[2±4]. The second integral incorporates the ®rst derivative into the measure, to
achieve a better alignment of maxima, minima, and in¯ection. points of the
waveforms [9]. The third integral incorporates a penalty for the roughness of the
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warping function, controlled by parameter l (the larger the value of l, the
smaller the curvature of hi).
Hence, the problem consists of estimating the curvature functions wi(t) in

equation (3) that will minimize the total measure (cost function)

C�x1, . . . , xN, w1, . . .wN, a1, a2, l� �
XN
i�1

F�xi, wi, a1, a2, l�: �5�

The curvature functions wi(t) may be de®ned by subdividing the time interval
[0, 1] with a set of K+1 equally spaced breakpoints tk, with k=0, . . . , K and
0= t0<t1� � �< tK=1, and setting�t

0

wi�v� dv �
XK
k�1

ckFk�t� �6�

where ck are the parameters to determine optimally, and Fk is the hat function

Fk�t� �
�tÿ tkÿ1�=D if t 2 �tkÿ1, tk�
�tk�1 ÿ t�=D if t 2 �tk, tk�1�

0 otherwise
,

8<: �7�

where D=1/K is the separation between consecutive breakpoints, and FK(t) is
not de®ned in interval [tK, tK+1] [6]. With this simple de®nition, equation (3)
may be integrated analytically, with the result

hi�t� � hi�tkÿ1� � A1
Deckÿ1

ck ÿ ckÿ1
�eckÿckÿ1��tÿtkÿ1�=D ÿ 1�, for t 2 �tkÿ1,tk�: �8�

Note that when computing equation (4), the average �x� of the normalized
wavelets x�i would be required before knowing the whole set of these normalized
wavelets. The following iterative process is then used. Coef®cients ck are given
initial values such as c

�0�
k =0 (k=1, . . . , K), which yields the initial

approximations for the warping functions h
�0�
i �t�= t and normalized wavelets

x
��0�
i �t�=xi(t). The average �x��0��t� of this initial set of normalized wavelets is

computed with equation (2), and used in equation (4) to determine a new set of
coef®cients c

�1�
k . These values of c

�1�
k are then used to obtain a better estimate of

the warping functions h
�1�
i �t� and the normalized wavelets x

��1�
i �t� � xi�h�1�i �t��. A

new average �x��1��t� is next determined, and the process iterated obtaining a new
set of normalized wavelets at each iteration, until there is no signi®cant
difference between two consecutive iterations. For example, the iterations may
be stopped when the difference between the total cost from two consecutive
iterations |C(n)ÿC(nÿ1)| is smaller than a precision parameter e.
When applying this algorithm to discretions, the integrals in equation (4) are

replaced by summations.
The algorithm assumes that all the wavelets had the same length from 0 to 1.

It is possible to modify the above equations to accommodate wavelets of
different lengths and time spans. However. it is much simpler to interpolate all
wavelets to a common length and attribute to this length an arti®cial [0, 1] time
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span, before applying the non-linear normalization (typically, this interpolation
will be done after extracting all F0 perturbation measures). The ®nal results
should be the same in both cases.

2.2. COMPUTATION OF THE HNR

After the wavelets have been optimally aligned in time using the above
algorithm, the HNR may be computed. The HNR is de®ned as [1]

HNR � N
� 1
0 �x�2�t� dtPN

i�1
� 1
0 ��x��t� ÿ x�i �t��2 dt

: �9�

The denominator would be equal to the total optimization measure, if only the
®rst integral in equation (4) is used (i.e., the classical squared error criterion). In
that case, the non-linear normalization would try to align the wavelets so as to
achieve the maximum value of HNR. The present algorithm will also align the
wavelets and increase in general the value of the HNR, but within the
constraints imposed by the requirements of smoothness and alignment of
derivatives, as controlled by parameters a1, a2 and l.

3. EXAMPLE

The acoustical signal of a subject producing a sustained /e/ at comfortable
pitch and intensity level for more than 1 s was recorded on a WAV format ®le at
a sampling frequency of 44 100 Hz and 16-bit resolution. After the recording, all
further processing was done using Matlab software. The signal was edited and a
stable segment of 20 cycles was visually selected. The boundaries of individual
cycles were identi®ed using the method of zero crossings, with the aid of low-
pass ®ltering [10]. Figure 1 shows the extracted 20 cycles (wavelets). Their
lengths vary from 359 samples (8�14 ms) to 369 samples (8�37 ms).
To apply the time normalization algorithm, a value of K=5 (number of time

breaks minus one) was ®rst selected. All the wavelets were then interpolated to
371 samples (the Matlab implementation of the algorithm requires the number
of samples minus 1 to be a multiple of K) using cubic splines, and an arti®cial
time span from 0 to 1 was adopted for the interpolated wavelets. The time
normalization algorithm was applied using the parameters a1=10ÿ2,
a2=26 10ÿ6, and l=10ÿ1 in equation (4). The values of a1 and a2 were
selected so as to obtain values of the integrals in equation (4) in the units range.
Working in this range of values facilitated the application of the Matlab
functions. An adequate value of l was selected by visual inspection of the
results.
Although the noise in the wavelets is small, some degree of smoothing was

necessary to obtain a good estimate of the derivatives. These derivatives were
therefore computed using a fourth order and 16-point Savitsky±Golay algorithm
[11]. Figure 2 shows a typical wavelet and its ®rst derivative.
The minimization of equation (5) was done using a Broyden±Fletcher±

Goldfarb±Shanno quasi-Newton algorithm [11]. The computation of successive
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approximations to the optimal warping functions was iterated until the
difference between the total cost measure in two consecutive iterations was less
than e=0�1. Figure 3 shows the resulting time normalized wavelets.
Figure 4 shows the optimal warping functions hi(t) (top). Since the amount of

warping required is small, the warping functions are very close to the straight
line h

�0�
i �t�= t. The warping may be better illustrated by computing the

difference hi(t)ÿ t, which represents the departure of normalized time from
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Figure 1. Un-normalized voice wavelets.
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Figure 2. (a) Typical voice wavelet and (b) its ®rst derivative.
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original time (Figure 4, bottom). We may de®ne some index to measure the
amount of warping required, such as the mean rms value

W � 1

N

XN
i�1

��������������������������������1
0

�hi�t� ÿ t�2 dt
s

: �10�
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Figure 3. Non-linearly normalized voice wavelets.
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Figure 4. (a) Warping functions hi(t) and (b) difference (hi(t)ÿ t).
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The higher the value of W, the larger the phasing variability of the wavelets. In
the present example, W=0�0027.
After the time normalization, the harmonic and noise components of the

wavelets were extracted as the average, and the difference of each wavelet to the
average, respectively. Figure 5 shows the harmonic component (top) and the
noise components (middle). It also shows the standard deviation of the noise
components (bottom). One can note that the noise is regularly distributed over
most of the wavelet period, except for an increase at the ®nal portion. The HNR
was ®nally computed as de®ned by equation (8), with a result HNR=325�33
(25�12 dB). For reference, the HNR computed by zero-padding the original
wavelets is HNR=52�03 (17�16 dB), and with linear interpolation to a common
length is HNR=87�44 (19�42 dB).
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Figure 5. (a) Harmonic component, (b) noise components, and (c) standard deviation of noise
components.
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4. CONCLUSIONS

This letter has shown a FDA algorithm for the time normalization of voice
signals, which might have more ¯exibility than previous dynamic programming
approaches. The FDA algorithm permits the use of different optimization
criteria according to the particular application. For example, one can use a
weighted combination of derivatives of the wavelets, or time-dependent weight
functions to emphasize portions of the time interval [7]. The resultant warping
functions are smooth and differentiable, and might then be used for further
analysis (as they contain information on the phasing variability of the wavelets).
Further, there is no need to select a reference wavelet to serve as a template for
the normalization.
The algorithm might have a wide application to investigate patterns and

variability of sets of wavelets in various ®elds of knowledge. It may also be
easily extended to vector-valued functions, for application to the simultaneous
time normalization of multiple sets of wavelets.

ACKNOWLEDGEMENTS

I am grateful to Dr Janete M. Nicola for her interest and help to collect the
voice signal. This work was supported by a Research Fellowship from the
National Council for Scienti®c and Technological Development of Brazil
(CNPq).

REFERENCES

1. E. YUMOTO, W. J. GOULD and T. BAER 1982 Journal of the Acoustical Society of
America 71, 1544±1550. Harmonics-to-noise ratio as an index of degree of hoarse-
ness.

2. Y. QI 1992 Journal of the Acoustical Society of America 92, 2569±2576. Time nor-
malization in voice analysis.

3. Y. QI, B. WEINBERG, N. BI and W. J. HESS 1995 Journal of the Acoustical Society
of America 97, 2525±2532. Minimizing the e�ect of period determination on the
computation of amplitude perturbation in voice.

4. Y. QI and R. E. HILLMAN 1997 Journal of the Acoustical Society of America 102,
537±543. Temporal and spectral estimations of harmonics-to-noise ratio in human
voice signals.

5. J. C. LUCERO, K. G. MUNHALL, V. L. GRACCO and J. O. RAMSAY 1997 Journal of
Speech, Language, and Hearing Research 40, 1111±1117. On the registration of time
and the patterning of speech movements.

6. J. O. RAMSAY and B. W. SILVERMAN 1997 Functional Data Analysis. New York:
Springer-Verlag.

7. J. O. RAMSAY and X. LI 1998 Journal of the Royal Statistical Society B 60, 351±
363. Curve registration.

8. J. O. RAMSAY 1998 Journal of the Royal Statistical Society B 60, 365±375.
Estimating smooth monotone functions.

9. K. WANG and T. GASSER 1997 Annals of Statistics 25, 1251±1276. Alignment of
curves by dynamic time warping.

10. I. R. TITZE and H LIANG 1993 Journal of Speech and Hearing Research 36, 1120±
1133. Comparison of F0 extraction methods for high-precision voice perturbation
measurements.



520 LETTERS TO THE EDITOR

11. W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING and B. P. FLANNERY 1992
Numerical Recipes in CÐThe Art of Scienti®c Computing. Cambridge: Cambridge
University Press.


